IBX5A82D9E049639

Monday, 27 February 2017

Kaidah Penurunan Umum

Kaidah Penurunan Umum

Kaidah Penurunan Umum:

1. Kaidah Kelinieran
{\displaystyle \left({cf}\right)'=cf'}

{\displaystyle \left({fg}\right)'=f'g+fg'}

2. Kaidah Darab

{\displaystyle \left({\frac {1}{f}}\right)'={\frac {-f'}{f^{2}}},\qquad f\neq 0}

3. Kaidah Hasil-Bagi

{\displaystyle \left({f \over g}\right)'={f'g-fg' \over g^{2}},\qquad g\neq 0}

4. Kaidah Rantai

{\displaystyle (f\circ g)'=(f'\circ g)g'}

5. Turunan Fungsi Invers

{\displaystyle (f^{-1})'={\frac {1}{f'\circ f^{-1}}}}
untuk setiap fungsi terdiferensialkan f dengan argumen riil dan dengan nilai riil, bila komposisi dan invers ada.

6. Kaidah Pangkat Umum

{\displaystyle (f^{g})'=f^{g}\left(g'\ln f+{\frac {g}{f}}f'\right)}

Turunan Fungsi Sederhana

1. {\displaystyle c'=0\,}
2. {\displaystyle x'=1\,}
3. {\displaystyle (cx)'=c\,}
4. {\displaystyle |x|'={x \over |x|}=\operatorname {sgn} x,\qquad x\neq 0}
5. {\displaystyle (x^{c})'=cx^{c-1}\qquad {\mbox{baik }}x^{c}{\mbox{ maupun }}cx^{c-1}{\mbox{ terdefinisi}}}\

6. {\displaystyle \left({1 \over x}\right)'=\left(x^{-1}\right)'=-x^{-2}=-{1 \over x^{2}}}

7. {\displaystyle \left({1 \over x^{c}}\right)'=\left(x^{-c}\right)'=-cx^{-(c+1)}=-{c \over x^{c+1}}}

8. {\displaystyle \left({\sqrt {x}}\right)'=\left(x^{1 \over 2}\right)'={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}

Turunan Fungsi Eksponensial dan Logaritmik


Perhatikan bahwa persamaan tersebut berlaku untuk semua c, namun turunan tersebut menghasilkan bilangan kompleks
Turunan Fungsi Trigonometrik



Turunan Fungsi Hiperbolik
{\displaystyle (\sinh x)'=\cosh x={\frac {e^{x}+e^{-x}}{2}}}
{\displaystyle (\operatorname {arcsinh} \,x)'={1 \over {\sqrt {x^{2}+1}}}}
{\displaystyle (\cosh x)'=\sinh x={\frac {e^{x}-e^{-x}}{2}}}
{\displaystyle (\operatorname {arccosh} \,x)'={1 \over {\sqrt {x^{2}-1}}}}
{\displaystyle (\tanh x)'=\operatorname {sech} ^{2}\,x}
{\displaystyle (\operatorname {arctanh} \,x)'={1 \over 1-x^{2}}}
{\displaystyle (\operatorname {sech} \,x)'=-\tanh x\,\operatorname {sech} \,x}
{\displaystyle (\operatorname {arcsech} \,x)'={-1 \over x{\sqrt {1-x^{2}}}}}
{\displaystyle (\operatorname {csch} \,x)'=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
{\displaystyle (\operatorname {arccsch} \,x)'={-1 \over x{\sqrt {1+x^{2}}}}}
{\displaystyle (\operatorname {coth} \,x)'=-\,\operatorname {csch} ^{2}\,x}

Turunan Fungsi Khusus
{\displaystyle (\Gamma (x))'=\int _{0}^{\infty }t^{x-1}e^{-t}\ln t\,dt} {\displaystyle (\Gamma (x))'=\Gamma (x)\left(\sum _{n=1}^{\infty }\left(\ln \left(1+{\dfrac {1}{n}}\right)-{\dfrac {1}{x+n}}\right)-{\dfrac {1}{x}}\right)=\Gamma (x)\psi (x)}
Fungsi gamma
 
Fungsi Riemann Zeta





{\displaystyle (\zeta (x))'=-\sum _{p{\text{ prime}}}{\frac {p^{-x}\ln p}{(1-p^{-x})^{2}}}\prod _{q{\text{ prime}},q\neq p}{\frac {1}{1-q^{-x}}}\!}




No comments:

Post a Comment

you say