Kaidah Penurunan Umum
Kaidah Penurunan Umum:
1. Kaidah Kelinieran
2. Kaidah Darab
3. Kaidah Hasil-Bagi
4. Kaidah Rantai
5. Turunan Fungsi Invers
untuk setiap fungsi terdiferensialkan f dengan argumen riil dan dengan nilai riil, bila komposisi dan invers ada.
6. Kaidah Pangkat Umum
Turunan Fungsi Sederhana
1.
![{\displaystyle c'=0\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6981c5664efd12d89a3b2701c946b1f58c07bdca)
2.
![{\displaystyle x'=1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9b941386f28d58bf7bf927c9fe0b5a3133e65d2d)
3.
![{\displaystyle (cx)'=c\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6dafb034766ceb5e8bf54ec720e0b436ce919b02)
4.
![{\displaystyle |x|'={x \over |x|}=\operatorname {sgn} x,\qquad x\neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/29a45d7d3ce4594e45569d18b4691a4aa5dd1d05)
5.
![{\displaystyle (x^{c})'=cx^{c-1}\qquad {\mbox{baik }}x^{c}{\mbox{ maupun }}cx^{c-1}{\mbox{ terdefinisi}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea0f36a9ed37c91efb9cc4643dd5f54607cf9ed2)
\
6.
7.
8.
Turunan Fungsi Eksponensial dan Logaritmik
Perhatikan bahwa persamaan tersebut berlaku untuk semua c, namun turunan tersebut menghasilkan bilangan kompleks
Turunan Fungsi Trigonometrik
![{\displaystyle (\sin x)'=\cos x\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a15ba1cb701e9708cacdb018cf1755f56ef6efa) | ![{\displaystyle (\arcsin x)'={1 \over {\sqrt {1-x^{2}}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c1e2d812fca707e0ad1c48d023dd728f44288526) |
![{\displaystyle (\cos x)'=-\sin x\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8855b905f39e51b4a63980de3a9663cba6970d55) | ![{\displaystyle (\arccos x)'={-1 \over {\sqrt {1-x^{2}}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/382db41eef46814df52c409f0344d281dbd2be6c) |
![{\displaystyle (\tan x)'=\sec ^{2}x={1 \over \cos ^{2}x}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d0dade24ba81481e23c0f6dbf04d8ce2ca66b94) | ![{\displaystyle (\arctan x)'={1 \over 1+x^{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8df7435e56644e257e6aff4eb9b327722bf109cb) |
![{\displaystyle (\sec x)'=\sec x\tan x\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c63db950fa9914c618ff1ec482386f4d5fef896a) | ![{\displaystyle (\operatorname {arcsec} x)'={1 \over |x|{\sqrt {x^{2}-1}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a11aeac6db521c16e120b202bdafcfa31303727) |
![{\displaystyle (\csc x)'=-\csc x\cot x\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ed929106cbc77ca3126a54cbc956316475b4d012) | ![{\displaystyle (\operatorname {arccsc} x)'={-1 \over |x|{\sqrt {x^{2}-1}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb3a00a2821f5e6bda347e55f6014c9d0602ddc) |
![{\displaystyle (\cot x)'=-\csc ^{2}x={-1 \over \sin ^{2}x}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/572846d9329887db2f8d66db698d1ff9b50cff03) | ![{\displaystyle (\operatorname {arccot} x)'={-1 \over 1+x^{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/97dc76820f8146ce36f8bbd6f427d1989044402f) |
Turunan Fungsi Hiperbolik
![{\displaystyle (\sinh x)'=\cosh x={\frac {e^{x}+e^{-x}}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd0e3e8980164e7de16899715de99be8d68329b7) | ![{\displaystyle (\operatorname {arcsinh} \,x)'={1 \over {\sqrt {x^{2}+1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e2513a729a78510e03ba109c345c4cfe28e03bd) |
![{\displaystyle (\cosh x)'=\sinh x={\frac {e^{x}-e^{-x}}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d858f5de93aa418df24f6f953e85d1c95587ef7f) | ![{\displaystyle (\operatorname {arccosh} \,x)'={1 \over {\sqrt {x^{2}-1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fb5ae509faf501bd0910473f2d25bec2dc908c1a) |
![{\displaystyle (\tanh x)'=\operatorname {sech} ^{2}\,x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bc0c134bf0eafdb91c3ad7b134a362efc450eb12) | ![{\displaystyle (\operatorname {arctanh} \,x)'={1 \over 1-x^{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6473560357b3480aa329b9155f3e5cf1e869e3b1) |
![{\displaystyle (\operatorname {sech} \,x)'=-\tanh x\,\operatorname {sech} \,x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/abcfeea34ec248db2a3bbc9fc7afc3842a553fe5) | ![{\displaystyle (\operatorname {arcsech} \,x)'={-1 \over x{\sqrt {1-x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3a87da394f1af5eaa34f57b9ec8bd5729721cc75) |
![{\displaystyle (\operatorname {csch} \,x)'=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e57a9a8e61e37f893533f3b160cb2a67df8fea7) | ![{\displaystyle (\operatorname {arccsch} \,x)'={-1 \over x{\sqrt {1+x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f99a223a90b126454b37d1170eeebbe40823621c) |
![{\displaystyle (\operatorname {coth} \,x)'=-\,\operatorname {csch} ^{2}\,x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e18a260c8711eb1c0c05928ab6c6704e02ec9004) | |
{\displaystyle (\sinh x)'=\cosh x={\frac
{e^{x}+e^{-x}}{2}}}
|
{\displaystyle (\operatorname {arcsinh} \,x)'={1
\over {\sqrt {x^{2}+1}}}}
|
{\displaystyle (\cosh x)'=\sinh x={\frac
{e^{x}-e^{-x}}{2}}}
|
{\displaystyle (\operatorname {arccosh} \,x)'={1
\over {\sqrt {x^{2}-1}}}}
|
{\displaystyle (\tanh x)'=\operatorname {sech}
^{2}\,x}
|
{\displaystyle (\operatorname {arctanh} \,x)'={1
\over 1-x^{2}}}
|
{\displaystyle (\operatorname {sech} \,x)'=-\tanh
x\,\operatorname {sech} \,x}
|
{\displaystyle (\operatorname {arcsech} \,x)'={-1
\over x{\sqrt {1-x^{2}}}}}
|
{\displaystyle (\operatorname {csch}
\,x)'=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
|
{\displaystyle (\operatorname {arccsch} \,x)'={-1
\over x{\sqrt {1+x^{2}}}}}
|
{\displaystyle (\operatorname {coth}
\,x)'=-\,\operatorname {csch} ^{2}\,x}
|
|
Turunan Fungsi
Khusus
{\displaystyle (\zeta (x))'=-\sum
_{p{\text{ prime}}}{\frac {p^{-x}\ln p}{(1-p^{-x})^{2}}}\prod _{q{\text{
prime}},q\neq p}{\frac {1}{1-q^{-x}}}\!}
|
No comments:
Post a Comment
you say