IBX5A82D9E049639
Showing posts with label Kaidah Penurunan Umum. Show all posts
Showing posts with label Kaidah Penurunan Umum. Show all posts

Monday, 27 February 2017

Kaidah Penurunan Umum

Kaidah Penurunan Umum

Kaidah Penurunan Umum:

1. Kaidah Kelinieran
{\displaystyle \left({cf}\right)'=cf'}

{\displaystyle \left({fg}\right)'=f'g+fg'}

2. Kaidah Darab

{\displaystyle \left({\frac {1}{f}}\right)'={\frac {-f'}{f^{2}}},\qquad f\neq 0}

3. Kaidah Hasil-Bagi

{\displaystyle \left({f \over g}\right)'={f'g-fg' \over g^{2}},\qquad g\neq 0}

4. Kaidah Rantai

{\displaystyle (f\circ g)'=(f'\circ g)g'}

5. Turunan Fungsi Invers

{\displaystyle (f^{-1})'={\frac {1}{f'\circ f^{-1}}}}
untuk setiap fungsi terdiferensialkan f dengan argumen riil dan dengan nilai riil, bila komposisi dan invers ada.

6. Kaidah Pangkat Umum

{\displaystyle (f^{g})'=f^{g}\left(g'\ln f+{\frac {g}{f}}f'\right)}

Turunan Fungsi Sederhana

1. {\displaystyle c'=0\,}
2. {\displaystyle x'=1\,}
3. {\displaystyle (cx)'=c\,}
4. {\displaystyle |x|'={x \over |x|}=\operatorname {sgn} x,\qquad x\neq 0}
5. {\displaystyle (x^{c})'=cx^{c-1}\qquad {\mbox{baik }}x^{c}{\mbox{ maupun }}cx^{c-1}{\mbox{ terdefinisi}}}\

6. {\displaystyle \left({1 \over x}\right)'=\left(x^{-1}\right)'=-x^{-2}=-{1 \over x^{2}}}

7. {\displaystyle \left({1 \over x^{c}}\right)'=\left(x^{-c}\right)'=-cx^{-(c+1)}=-{c \over x^{c+1}}}

8. {\displaystyle \left({\sqrt {x}}\right)'=\left(x^{1 \over 2}\right)'={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}

Turunan Fungsi Eksponensial dan Logaritmik


Perhatikan bahwa persamaan tersebut berlaku untuk semua c, namun turunan tersebut menghasilkan bilangan kompleks
Turunan Fungsi Trigonometrik



Turunan Fungsi Hiperbolik
{\displaystyle (\sinh x)'=\cosh x={\frac {e^{x}+e^{-x}}{2}}}
{\displaystyle (\operatorname {arcsinh} \,x)'={1 \over {\sqrt {x^{2}+1}}}}
{\displaystyle (\cosh x)'=\sinh x={\frac {e^{x}-e^{-x}}{2}}}
{\displaystyle (\operatorname {arccosh} \,x)'={1 \over {\sqrt {x^{2}-1}}}}
{\displaystyle (\tanh x)'=\operatorname {sech} ^{2}\,x}
{\displaystyle (\operatorname {arctanh} \,x)'={1 \over 1-x^{2}}}
{\displaystyle (\operatorname {sech} \,x)'=-\tanh x\,\operatorname {sech} \,x}
{\displaystyle (\operatorname {arcsech} \,x)'={-1 \over x{\sqrt {1-x^{2}}}}}
{\displaystyle (\operatorname {csch} \,x)'=-\,\operatorname {coth} \,x\,\operatorname {csch} \,x}
{\displaystyle (\operatorname {arccsch} \,x)'={-1 \over x{\sqrt {1+x^{2}}}}}
{\displaystyle (\operatorname {coth} \,x)'=-\,\operatorname {csch} ^{2}\,x}

Turunan Fungsi Khusus
{\displaystyle (\Gamma (x))'=\int _{0}^{\infty }t^{x-1}e^{-t}\ln t\,dt} {\displaystyle (\Gamma (x))'=\Gamma (x)\left(\sum _{n=1}^{\infty }\left(\ln \left(1+{\dfrac {1}{n}}\right)-{\dfrac {1}{x+n}}\right)-{\dfrac {1}{x}}\right)=\Gamma (x)\psi (x)}
Fungsi gamma
 
Fungsi Riemann Zeta





{\displaystyle (\zeta (x))'=-\sum _{p{\text{ prime}}}{\frac {p^{-x}\ln p}{(1-p^{-x})^{2}}}\prod _{q{\text{ prime}},q\neq p}{\frac {1}{1-q^{-x}}}\!}