Ilmu Pengetahuan
Berbagi Informasi
IBX5A82D9E049639
Sunday, 26 August 2018
Tangen
Tangen
(lambang
tg
,
tan
;
bahasa Belanda
: tangens;
bahasa Inggris
:
tangent
) dalam
matematika
adalah perbandingan sisi
segitiga
yang ada di depan sudut dengan sisi segitiga yang terletak di sudut (dengan catatan bahwa segitiga itu adalah segitiga siku-siku atau salah satu sudut segitiga itu 90
o
).
Berdasarkan segitiga pada ilustrator (di kanan), berdasarkan definisi tangen, di atas maka nilai tangen adalah
{\displaystyle \tan A={{\mbox{a}} \over {\mbox{b}}}\qquad \tan B={{\mbox{b}} \over {\mbox{a}}}}
Nilai tangen positif di
kuadran
I dan III dan negatif di kuadran II dan IV.
Hubungan tangen dengan kotangen:
{\displaystyle \cot A={\frac {1}{\tan A}}\,}
Hubungan nilai tangen dengan nilai sinus dan kosinus
{\displaystyle \tan A={\frac {sinA}{cosA}}\,}
Nilai tangen sudut istimewa
0°
8°
15°
16°
18°
30°
37°
45°
53°
60°
72°
74°
75°
82°
90°
Sinus
{\displaystyle 0}
{\displaystyle {\frac {\sqrt {2}}{10}}}
{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
{\displaystyle {\frac {7}{25}}}
{\displaystyle {\frac {-1+{\sqrt {5}}}{4}}}
{\displaystyle {\frac {1}{2}}}
{\displaystyle {\frac {3}{5}}}
{\displaystyle {\frac {\sqrt {2}}{2}}}
{\displaystyle {\frac {4}{5}}}
{\displaystyle {\frac {\sqrt {3}}{2}}}
{\displaystyle {\frac {\sqrt {10+2{\sqrt {5}}}}{4}}}
{\displaystyle {\frac {24}{25}}}
{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
{\displaystyle {\frac {7{\sqrt {2}}}{10}}}
{\displaystyle 1}
Kosinus
{\displaystyle 1}
{\displaystyle {\frac {7{\sqrt {2}}}{10}}}
{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
{\displaystyle {\frac {24}{25}}}
{\displaystyle {\frac {\sqrt {10+2{\sqrt {5}}}}{4}}}
{\displaystyle {\frac {\sqrt {3}}{2}}}
{\displaystyle {\frac {4}{5}}}
{\displaystyle {\frac {\sqrt {2}}{2}}}
{\displaystyle {\frac {3}{5}}}
{\displaystyle {\frac {1}{2}}}
{\displaystyle {\frac {-1+{\sqrt {5}}}{4}}}
{\displaystyle {\frac {7}{25}}}
{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
{\displaystyle {\frac {\sqrt {2}}{10}}}
{\displaystyle 0}
Tangen
{\displaystyle 0}
{\displaystyle {\frac {1}{7}}}
{\displaystyle 2-{\sqrt {3}}}
{\displaystyle {\frac {7}{24}}}
{\displaystyle {\frac {(1+{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{4}}}
{\displaystyle {\frac {\sqrt {3}}{3}}}
{\displaystyle {\frac {3}{4}}}
{\displaystyle 1}
{\displaystyle {\frac {4}{3}}}
{\displaystyle {\sqrt {3}}}
{\displaystyle {\frac {(-1+{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{10+2{\sqrt {5}}}}}
{\displaystyle {\frac {24}{7}}}
{\displaystyle 2+{\sqrt {3}}}
{\displaystyle 7}
{\displaystyle \infty }
Kotangen
{\displaystyle \infty }
{\displaystyle 7}
{\displaystyle 2+{\sqrt {3}}}
{\displaystyle {\frac {24}{7}}}
{\displaystyle {\frac {(-1+{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{10+2{\sqrt {5}}}}}
{\displaystyle {\sqrt {3}}}
{\displaystyle {\frac {4}{3}}}
{\displaystyle 1}
{\displaystyle {\frac {3}{4}}}
{\displaystyle {\frac {\sqrt {3}}{3}}}
{\displaystyle {\frac {(1+{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{4}}}
{\displaystyle {\frac {7}{24}}}
{\displaystyle 2-{\sqrt {3}}}
{\displaystyle {\frac {1}{7}}}
{\displaystyle 0}
Sekan
{\displaystyle 1}
{\displaystyle {\frac {5{\sqrt {2}}}{7}}}
{\displaystyle {\sqrt {6}}-{\sqrt {2}}}
{\displaystyle {\frac {25}{24}}}
{\displaystyle {\frac {4{\sqrt {10+2{\sqrt {5}}}}}{10+2{\sqrt {5}}}}}
{\displaystyle {\frac {2{\sqrt {3}}}{3}}}
{\displaystyle {\frac {5}{4}}}
{\displaystyle {\sqrt {2}}}
{\displaystyle {\frac {5}{3}}}
{\displaystyle 2}
{\displaystyle 1+{\sqrt {5}}}
{\displaystyle {\frac {25}{7}}}
{\displaystyle {\sqrt {6}}+{\sqrt {2}}}
{\displaystyle 5{\sqrt {2}}}
{\displaystyle \infty }
Kosekan
{\displaystyle \infty }
{\displaystyle 5{\sqrt {2}}}
{\displaystyle {\sqrt {6}}+{\sqrt {2}}}
{\displaystyle {\frac {25}{7}}}
{\displaystyle 1+{\sqrt {5}}}
{\displaystyle 2}
{\displaystyle {\frac {5}{3}}}
{\displaystyle {\sqrt {2}}}
{\displaystyle {\frac {5}{4}}}
{\displaystyle {\frac {2{\sqrt {3}}}{3}}}
{\displaystyle {\frac {4{\sqrt {10+2{\sqrt {5}}}}}{10+2{\sqrt {5}}}}}
{\displaystyle {\frac {25}{24}}}
{\displaystyle {\sqrt {6}}-{\sqrt {2}}}
{\displaystyle {\frac {5{\sqrt {2}}}{7}}}
{\displaystyle 1}
No comments:
Post a Comment
you say
Newer Post
Older Post
Home
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
you say