Sutawanir1, Agus Yodi Gunawan2, Nina Fitriyati3, Iskandar Fahmi4, Anggita Septiani5 & Rini Marwati6
1Statistics Research Division Institut Teknologi Bandung Indonesia,
Jalan Ganesa 10, Bandung 40132, Indonesia
2Industrial Financial Research Division, Institut Teknologi Bandung Indonesia,
Jalan Ganesa 10, Bandung 40132, Indonesia
3Mathematics Department, UIN Syarif Hidayatullah, Jl Ir. H. Juanda No 95, Ciputat, Tangerang Banten 15412, Indonesia
4Oil & Gas Drilling, Production & Management Research Division,
Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
5Undergraduate student of Mathematics Study Program, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
6Universitas Pendidikan Indonesia Bandung Indonesia,
Jalan Dr. Setiabudi No. 229, Bandung 40154, Indonesia
Email: sdarwis@math.itb.ac.id
1Statistics Research Division Institut Teknologi Bandung Indonesia,
Jalan Ganesa 10, Bandung 40132, Indonesia
2Industrial Financial Research Division, Institut Teknologi Bandung Indonesia,
Jalan Ganesa 10, Bandung 40132, Indonesia
3Mathematics Department, UIN Syarif Hidayatullah, Jl Ir. H. Juanda No 95, Ciputat, Tangerang Banten 15412, Indonesia
4Oil & Gas Drilling, Production & Management Research Division,
Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung 40132, Indonesia
5Undergraduate student of Mathematics Study Program, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
6Universitas Pendidikan Indonesia Bandung Indonesia,
Jalan Dr. Setiabudi No. 229, Bandung 40154, Indonesia
Email: sdarwis@math.itb.ac.id
Abstract. The Ensemble Kalman Filter (EnKF) can be used as a method to estimate reservoir parameters, such as permeability and porosity. These parameters play an important role in characterizing reservoir performance. The EnKF is a sequential estimation method that uses the parameters at t – 1 (called prior) to estimate the parameters at t adjusted by observations at t (called posterior). In this paper, the EnKF was used to estimate the reservoir parameters for the case of a linear flow of two interacting production-injection oil wells. The Laplace transform was used to obtain an analytical solution of the diffusivity equation. A state space representation was generated using the analytical solution. A simulation study showed that the proposed method can be used successfully to estimate the reservoir parameters using well-pressure observations.
Keywords: ensemble Kalman filter; flow model; interacting well; sequential estimation; Laplace transform.
No comments:
Post a Comment
you say